Читать онлайн полностью бесплатно Марат Авдыев - Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей

Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей

Могут ли обычные школьники сделать научное открытие. Какой должна быть современная школа. Кого, чему и как учить.  – ответы на эти вопросы имеют важное значение.

© Марат Авдыев, 2021


ISBN 978-5-0053-7630-5

Создано в интеллектуальной издательской системе Ridero

Часть первая для школьников 12+

Занятия в школе

Предисловие

Посвящается нашим детям и внукам

Могут ли обычные школьники сделать научное открытие? Какой должна быть современная школа? Кого, чему и как учить? – ответы на эти вопросы имеют важное значение.

Сократите в микрорайоне или посёлке школу – и сразу получите рост преступности, причём не только подростковой. Выходит, что без воспитания подрастающего поколения нет будущего. Сейчас в мире происходит борьба за умы и души молодых людей через Интернет и мобильные устройства. Забыть собственную историю и достижения, засорить мозги людей мусором, «подсадить на иглу» развлекательных информационных потоков, оболванить, заставить купить ненужное, но престижное, сузить выбор до мнений непоколебимых экспертов и «авторитетов», набравших миллионы «лайков» – вот задача наших «Западных друзей».

Наше общество становится очень жёстким и консервативным в выражении свободы собственного мнения: всё заранее уже решено, выбор уже сделан на уровне подсознания. В качестве компенсации предоставляется лишь свобода в изощрённых пороках: переплюнь всех, опереди и шокируй даже ценой риска для жизни.

Вызов, который сделан в этой книге, показывает на одном конкретном примере, как этому можно и нужно противостоять. Автор поставил задачу развеять господствующие мифы о научном превосходстве стран большого Запада, о научной этике, о беспристрастности и просветительской миссии по всей Земле. Проще говоря, есть «правильные народы», обучающие отсталые, «неправильные народы» – и таков порядок вещей. На деле оказывается совсем не так.

Просто формулируемая Великая теорема Ферма и её наглядное доказательство, понятное всем, кто имеет лишь школьную подготовку, стала своего рода тестом на несостоятельность этих мифов. История для адептов Большого Запада вышла совсем не красивая и даже комичная.

Но пройдёт ещё не мало времени, прежде, чем простое доказательство Великой теоремы Ферма, будет признано миллиардами обычных людей – слишком силён поток дезинформации из разряда оболванивания потребителя.

Но даже, если эта книга заставит думать самостоятельно всего несколько человек и будет стимулировать их во всём следовать собственному выбору, уважать свой народ и свою историю, то автор будет считать свою задачу исполненной.

России. Новосибирск. Сургут. 2020 – 2021 г.

История Великой теоремы

Великая Теорема Ферма была сформулирована Пьером де Ферма в 1637 г., она гласит, что уравнение:

a>n + b>n = c>n не имеет решений в целых, кроме нулевых значений, при n> 2

Когда n = 2, мы имеем дело с привычной теоремой Пифагора, при этом существует бесконечное число решений уравнения в целых числах – Пифагоровы тройки. Примеры Пифагоровых троек известны:

(3, 4, 5); (5, 12, 13); (15, 8, 17) и др.

Со времён Евклида был найден целый ряд способов генерации Пифагоровых троек. Из школьного куса математики легко понять, что Пифагоровы тройки имеют наглядную интерпретацию в терминах геометрии рациональных точек на единичной окружности. Эйлер в 1770 году доказал теорему (1) для случая n=3, Дирихле и Лежандр в 1825 – для n=5, Ламе – для n=7. Куммер показал, что теорема верна для всех простых n, меньших 100.

В сентябре 1994 года профессор Принстонского университета Эндрю Уайлс доказал Великую теорему, для всех n, но это доказательство, насчитывающее свыше ста сорока страниц, понятных лишь профильным специалистам в теории чисел, нельзя уместить на полях перевода «Арифметики» Диофанта, «если бы они были немного шире», по выражению самого Пьера де Ферма, утверждавшего, что он «нашёл поистине чудесное доказательство, но поля здесь слишком узки, чтобы вместить его».

Необычайная красота и лаконичность формулировки Великой теоремы Ферма заставляют искать наглядное решение. Итак, для n ≥ 3 Пифагоровых троек найти ещё никому не удалось. Почему?

Глава 1 Необычная встреча

– Итак, Матвей, за что Вы его так сильно ударили? – обратился профессор Борщов со своей обычной доброй улыбкой. За столом в комнате примирения сидели подравшиеся одноклассники: Матвей Строев и Сергей Тагильцев.

– Я его не ударил, а бросил через бедро… с подсечкой – чуть смущёно ответил Матвей, – но я не ожидал, что он упадёт так неудачно.

– Так за что? – уже строже переспросил Борщов.

– Ну он оскорбил меня… он назвал меня китайцем – Матвей посмотрел на Сергея с сожалением.

– А это было действительно так? – обратился Борщов к Сергею.

– Да, мы спорили о музыке, о Рей Чарльзе, ну о том самом слепом пианисте из США и мы… то есть я, неожиданно перешли на личности – Сергей потупился и замолчал. – ну словом, я больно и неудачно упал от его приёма. Я уже не обижаюсь на Матвея.

– Я тоже, – слегка улыбнувшись сказал Матвей.

Борщов облеченно откинулся на стуле и резюмировал:

– Таким образом инцидент исчерпан?

– Да, можно считать исчерпанным, – ответили разом Матвей и Сергей, оба они уже посматривали на дверь комнаты.

– Можно мне выразить Вам свои пожелание на будущее? – остановил их жестом Борщов.

– Да, – последовал общий ответ мальчиков.



Ваши рекомендации