Гравитационная модель удачи
Альберт Эйнштейн сказал, что безумие это проделывать то же самое снова и снова, но каждый раз ожидать иного результата. Некоторые могут понять это высказывание слишком буквально, что если что-то не получилось с первого раза, то не получится никогда. Но Эйнштейн имел в виду гораздо более широкое понятие. Так вероятность какого-либо события в каком-либо опыте не изменяется, хотя само событие может происходить или не происходить от опыта к опыту.
Сегодня мы попробуем подвести научную основу под хорошо известные понятия удачи, везения, успешности, невезения и прочих случайных явлений в нашей жизни. Многим хорошо известно, что есть такие люди, которым всегда везёт: у них никогда ничего не ломается, в магазинах им не продают брак, им всегда попадается хороший преподаватель, они всегда попадают в хороший коллектив, им всегда попадается лёгкий билет и с ними всегда случается только хорошее. И наоборот, есть такие люди, которым не везёт всегда: они всегда выбирают бракованный товар, преподаватели у них всегда худшие, они всегда оказываются не в том месте не в то время, их всегда ловят единственными из всех и так далее.
Разумеется, что для всего есть много закономерных причин: несобранность, лень, невнимательность, рассеянность и прочие, но эти случаи мы рассматривать не будем. Понятно, что у несобранного человека вероятность опоздания на поезд больше, но не каждому не везёт настолько, что именно в тот день, когда ему надо было ехать на поезд, происходит единственный за десять лет снегопад. Именно самолёт неудачника останется без топлива и будет задержан очень надолго, а если он переоформит билеты на другой, то и другой самолёт вернут по причине внезапной технической неисправности.
На первый взгляд может показаться, что все беды и удачи происходят по теории вероятностей и в соответствии с этой теорией всегда найдётся такой неудачник, которому не повезёт ни разу и который соберёт все мыслимые и немыслимые несчастья. Точно так же найдётся такой счастливчик, который получит всю возможные случаи удачи. Это в значительной степени правильно, только не до конца и проявляется это несоответствие в числах.
Если бы все случайности подчинялись хорошо известной схеме Бернулли, то мы бы наблюдали очень мало счастливчиков и неудачников потому, что математическое ожидание числа таких представителей убывало бы практически по экспоненте. То есть на миллиард человек был бы один патологический неудачник и один невероятный счастливчик. А мы наблюдаем таких представителей в тысячи, если не миллионы раз чаще. В чём же причина?
А причина в том, что мы наблюдаем не просто чистую статистику, а статистику с погрешностью на закономерность, которая становится заметной только в краевых областях с очень малым теоретическим заполнением. Одной из причин такой погрешности является то, что теоретическая кривая распределения получается только в случае анализа бесконечного количества данных, чего в реальности не бывает, поэтому возникают закономерные отклонения в соответствии с хорошо известными законами. А вот другим видом погрешности является системная погрешность, которую легко не заметить или принять за первый вид погрешности. То есть погрешность в один миллион слабо заметна в области ста миллионов, зато эта погрешность очевидна в области тысяч и вообще перекрывает всю статистику напрочь. Нас интересует именно это отклонение и выяснение его причин, чтобы иметь возможность повлиять на него в нужную сторону.
Здесь мы заранее определимся, что не будем пытаться выяснить причины происходящего, а будем просто выяснять, как всё происходит. Такой подход широко используется, например, в квантовой механике, где просто принято, что электроны не падают на ядра атомов без объяснения причин, почему этого не происходит. Также в бросании монеты принято, что монета падает на обе стороны приблизительно поровну без объяснения причин такого явления, а просто принято, что так происходит по результатам статистики опытов.
В глубокой теории мы могли бы представить себе причины происходящего и мы сделаем это очень кратко. Мысленно возьмём кирпич, положим на стол и отмерим до угла расстояние линейкой. Второй кирпич на то же место можно положить при добавлении второй координаты. Если мы захотим совместить у кирпичей две координаты, то придётся добавить третью. После добавления третьей координаты положим второй кирпич на место первого, а первый уберём. Понятно, что два кирпича не могут иметь одну координату и каждый кирпич может иметь одну единственную координату в каждый момент времени. Естественный вывод это добавить четвёртую координату и устранить получившийся парадокс. Теперь мы рассмотрим полученную модель.